
tylr: A Tiny Tile-Based Structure Editor
David Moon

dmoo@umich.edu
University of Michigan
Ann Arbor, MI, USA

Andrew Blinn
blinnand@umich.edu
University of Michigan
Ann Arbor, MI, USA

Cyrus Omar
comar@umich.edu

University of Michigan
Ann Arbor, MI, USA

Figure 1. A high-level schematic of the concepts of tile-based editing. A tile-based editor operates on three levels of structure:
terms, which follow the abstract syntax of the language; tiles, which correspond to groups of matching delimiters; and shards,
which correspond to individual tokens and delimiters. Terms disassemble into tiles, tiles into shards as needed to accommodate
user actions; meanwhile, system aids assist and guide user actions to ensure shards reassemble back to tiles, tiles back to terms.

Abstract
Structure editors designed for keyboard input often struggle
to resolve the tension between maintaining hierarchical term
structure and offering efficient linear editing affordances.
Contemporary designs either compromise structure by de-
ferring to text near the leaves or else maintain structure by
permitting only edits that transform the selected term. How-
ever, visually adjacent sequences (e.g. of operators, operands,
and individual delimiters) do not always cleave cleanly to
term boundaries, so even experienced users report difficul-
ties with selection and code restructuring tasks. We propose
a novel approach to structure editing, tile-based editing, that
maintains term structure while offering linear selection and
modification affordances. The idea is to allow disassembly
of terms into linearly sequenced tiles and shards around
user selections, while guiding the user through restructuring

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
TyDe ’22, September 11, 2022, Ljubljana, Slovenia
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9439-0/22/09. . . $15.00
https://doi.org/10.1145/3546196.3550164

actions and automatically inserting holes in a manner that
ensures reassembly into a term.
This paper introduces tylr, a tiny tile-based editor de-

signed primarily to highlight this uniquely flexible set of
affordances. We evaluated tylr with a lab study where par-
ticipants performed simple code transcription and modifica-
tion tasks using tylr as well as a text editor and a structure
editor built on JetBrains MPS, a state-of-the-art keyboard-
driven structure editor generator. Our results indicate that
participants frequently made use of tylr’s selection expres-
sivity, and that this flexibility helped them complete some
modification tasks significantly more quickly than with the
MPS editor. We further observed that a few participants com-
pleted some tasks more quickly using tylr than with text,
but were in general slowed by a number of limitations in
our current design and implementation. We discuss these
limitations and suggest future research and design directions
aiming toward more flexible structure editing interfaces.

CCS Concepts: • Software and its engineering → Inte-
grated and visual development environments.

Keywords: structure editing, projectional editing, usability
ACM Reference Format:
David Moon, Andrew Blinn, and Cyrus Omar. 2022. tylr: A Tiny
Tile-Based Structure Editor. In Proceedings of the 7th ACM SIGPLAN
International Workshop on Type-Driven Development (TyDe ’22),
September 11, 2022, Ljubljana, Slovenia. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3546196.3550164

https://doi.org/10.1145/3546196.3550164
https://doi.org/10.1145/3546196.3550164

TyDe ’22, September 11, 2022, Ljubljana, Slovenia David Moon, Andrew Blinn, and Cyrus Omar

1 Introduction
Programmers typically write their programs as text that is
subsequently parsed into abstract terms of the underlying
language. While text offers an ubiquitous and flexible inter-
face, it suffers in the programming context because most tex-
tual edit states cannot be parsed successfully. Consequently,
in such edit states, text-based programming environments
must either disable language-specific tooling or otherwise
rely on ad hoc heuristics to guess the user’s intended term
structure.

Structure editors resolve this issue by having the program-
mer directly modify the program’s term structure, thereby
ensuring well-formed input to language-specific analyses.
Recent work on Hazelnut [18], a type-aware structure editor
calculus, has shown that it is possible for every edit state
to be meaningfully typed, giving the foundations for a con-
tinuously available type-directed development experience.
Unfortunately, as many have observed [1, 2, 7, 9, 11, 13–
15, 17, 20, 22], structure editors are often too slow or difficult
to use. For example, while block-based editors like Scratch
[12] have recently excelled at introducing programming to
novices, their mouse-driven input and low visual informa-
tion density make them unwieldy as users gain experience
and create larger programs [4]. Other structure editors avoid
those issues with keyboard-driven text-like interfaces, but
either compromise structure by deferring to text at the leaves
[10], or suffer from steep learning curves and difficult-to-
predict editing behavior [3].
Whatever the input modality, structure editors struggle

with a tension between the hierarchical structure demanded
by the program’s abstract syntax, and the editing affordances
suggested by the program’s two-dimensional projection onto
the user’s screen. Clusters of visually adjacent projectional
components frequently do not hew to terms in the abstract
syntax (e.g. 2 + 3 in the larger expression 2 + 3 * 4),
leading to a severely restricted selection capability from the
user’s point of view. Meanwhile, projected components of a
term (e.g. the left and right braces delimiting an expression
block), occupying potentially distant positions on the screen,
remain rigidly locked together—by analogy, consider a vector
graphics editor in which it is not possible to manipulate the
individual corners or edges of a box. Both of these issues
stem from the fact that structure editors traditionally operate
solely on complete language terms.
We propose a novel approach to structure editing, called

tile-based editing, that offers these missing partial struc-
ture editing affordances while still maintaining term struc-
ture. A tile-based editor visually organizes projected tokens
into hierarchical structures of three distinct strata depicted
in Figure 1: terms, tiles, and shards, ordered high to low.
Higher structures may be disassembled (i.e. serialized) into

lower structures as needed when the user’s selection bound-
aries cut across the higher structure’s token range. Mean-
while, lower structures are opportunistically reassembled
(i.e. parsed) into higher structures in and around the user’s
selection as it grows and shrinks.
This paper contributes tylr, a tiny tile-based editor that

concretely demonstrates these unique affordances. After an
overview of tylr’s design, we present the results of a lab
study where participants performed simple code transcrip-
tion and modification tasks using tylr as well as a text
editor and JetBrains MPS, the state-of-the-art in keyboard-
driven structure editing. We found that participants using
tylr completed some modification tasks significantly more
quickly than when using MPS, particularly on those tasks
where they made use of tylr’s selection expressivity. We
further observed that participants using tylr occasionally
outperformed themselves on similar tasks using a text editor,
but were in general slowed by a number of limitations in
our current design and implementation. We discuss these
limitations and conclude with future research and design
directions for further improving the usability of tile-based
editing.

2 Background & Motivation
tylr contributes to a long history of structure editor design,
dating back to the introduction of the Cornell Program Syn-
thesizer [19] in 1981. Unlike prior work, which generally
limits user edits to simple operations on complete program
terms, tylr broadens the class of structures that the user
may select and manipulate, while ensuring the result has
valid term structure. In this section we illustrate the user
experience limitations of strictly term-based structure edit-
ing, focusing on contemporary designs, to motivate tylr’s
expressive selection capabilities.

Figure 2. Scratch blocks

The most popular struc-
ture editors today are block-
based editors like Scratch
[12]. In these editors, the user
authors a program like the
Scratch program shown to
the right (adapted from [24])
by drag-and-dropping blocks
together on a canvas. Each
block corresponds to a syn-
tactic form of the underly-
ing language and is shaped,
based on its sort and type, to
visually indicate how it should be placed relative to other
blocks. tylr employs a similar metaphor of syntactic-forms-
as-puzzle-pieces, but uses a uniform shape system across
all sorts, eliminating the visual design burden of language
customization.

tylr: A Tiny Tile-Based Structure Editor TyDe ’22, September 11, 2022, Ljubljana, Slovenia

While block-based editors have seen great success in re-
cent years at teaching programming to novices, they soon
become unwieldy once users start creating and maintaining
larger or more expression-oriented programs. For example—
adapting an observation by Brown et al. [4]—constructing

the small calculation shown
on the left involves assem-
bling seven blocks, each re-

quiring a sequence of mouse gestures to find the appropriate
form and drag-and-drop it into the right spot on the can-
vas; the equivalent construction in a text editor or tylr
would take seven keypresses. The block-based approach is
further slowed if the user chooses to construct the expres-
sion left-to-right or bottom-up rather than top-down, since
wrapping an existing block in a new one requires two drag-
and-drop sequences. Meanwhile, the vertical height of the
expression block grows with its tree height, leading to low
visual information density when working with deeply nested
expressions [9].

Other structure editors feature keyboard-driven text-like
interfaces, which avoids the particular pitfalls of block-based
editing but forces new trade-offs. Some such editors [10, 19]
employ hybrid editing models, using structure editing for
large syntactic forms while deferring to text editing at the
leaves. This approach loses the benefits of structure editing
at those levels, e.g., unrestricted language composition at the
expression level.
Other editors, like those built with the language work-

bench JetBrains MPS [21], take a strictly structured approach
and use a number of techniques to translate text-like editing
flows into program term transformations. For example, MPS
exposes hooks to the language engineer by which they may
specify how to transform a program term and its context
when the language user types text to the left or right of the
term; common such patterns, e.g. left-to-right insertion of
operator sequences, are codified and specified declaratively
[23]. However, these techniques are limited to insertion and
do not offer similar affordances for selection and deletion. Se-
lections remain restricted to complete program terms, which
can lead to cumbersome multi-step interactions to perform
what amount to simple swaps of token ranges in the user-
facing text-like projection, as shown for example in Figure 3.
Meanwhile, while an MPS user may construct the expression
x * x + y * y just like in a text editor, subsequently deleting
the + token would delete y * y along with it, leaving only x
* x; owing to its strictly term-based edit state, MPS editors
cannot retain more than one child of a deleted term. Indeed,
in a controlled user study, Berger et al. [3] observed that
MPS novice users felt that selection was slow and inaccurate
relative to text, despite a 45-minute training session and an-
other 30-45 minutes worth of study tasks; and that both MPS
novices and experts alike struggled to predict the effects of
deletion.

(a)

(b)

Figure 3. Screenshots of a JetBrains MPS editor being used
to edit a program expression of nested function applications,
written in a small artificial language called Lamb that we
used in our user study (Figure 7). (a) shows all possible se-
lections the user can make that contains a bracket, given
MPS’s restriction of selections to complete program terms.
(b) shows the optimal edit sequence for completing one of
our study tasks. The ultimate effect in the user-facing projec-
tion is swap the token ranges [y * z - y][z * y -z] and
]], but selection restriction means the user must go through
two separate procedures of cutting an argument, deleting its
enclosing brackets, reconstructing the brackets elsewhere,
and pasting.

Such selection and deletion behavior may be less surpris-
ing with better visualizations indicating the term structure,
such as in block-based editors, but even then users expe-
rience frustrations. In a user study of block-based editing
involving large refactoring tasks [9], Holwerda and Hermans
elicited post-task user responses on the cognitive dimensions
[8] of block-based editing and found that viscosity was the
most commented-on dimension with 24 remarks. Half (12)
were positive, a majority of which were about the ease of
refactoring when the selected elements corresponded to com-
plete syntactic terms. Of the negative half, half (6) were about
the difficulty of refactoring when the desired selection does
not correspond to a complete term; for example, in Figure
2, dragging the move block out of the repeat block drags all

TyDe ’22, September 11, 2022, Ljubljana, Slovenia David Moon, Andrew Blinn, and Cyrus Omar

the statements below along with it, thereby requiring mul-
tiple gestures in sum to select and remove the single move
block. These results help motivate the expressive selection
capabilities of tile-based editing, independent of the specific
visualization scheme or input modality.

3 Design Overview
tylr is a minimal prototype of tile-based editing, optimized
at this stage for exposition rather than usability as a prac-
tical authoring tool. Its most salient limitations currently
include a single-line edit state, single-character variables
and numbers, and single-key input for constructing new
forms. Nevertheless, it demonstrates uniquely flexible selec-
tion affordances compared to term-based structure editing
while still preventing structural violations.

To a first approximation, tylr acts on lexical token se-
quences much like a text editor acts on character sequences.
Using keyboard input, the user moves a cursor to positions
between tokens, where they may insert and remove tokens,
mark selection boundaries of arbitrary ranges, and ‘cut’ se-
lections to ‘paste’ them elsewhere. Unlike a text editor, tylr
assists and guides these interactions to ensure that every edit
state, upon pasting, can be reassembled into a well-formed
term.
This assistance is divided into two independent subsys-

tems that may be understood as operating at distinct lev-
els of tylr’s structural strata, as shown in Figure 1: the
grouter, which aids the reassembly of tiles into terms (Sec-
tion 3.1); and the backpack, tylr’s spiritual successor to the
text editor’s clipboard, which guides user movement to en-
sure proper reassembly of shards into tiles (Section 3.2).

3.1 Terms⇌ Tiles: The Grouter
Panning the cursor over a program in tylr reveals its term
structure, as depicted in Figure 4a, which follows the ab-
stract syntax of a simple functional language. tylr indicates
each term with a convex hexagonal outline, within which it
highlights the term’s constituent tokens. The visual nesting
between terms reflects their strictly hierarchical organiza-
tion.

Selecting the range encompassing the first term in Figure
4a reveals the term’s disassembly into a sequence of tiles,
as shown in Figure 4b. Each tile consists of a complete set
of matching tokens (e.g. the tokens let, =, and in of the
first tile) coupled with the terms those tokens delimit on
both sides (e.g. the bound variable f and its definition as an
anonymous function that returns the sum of its arguments).
Unlike the strictly convex terms, the tips of a tile may each be
convex or concave (e.g. the first tile has a convex left tip and
a concave right tip). The different configurations of a tile’s
left and right tips indicate its syntactic role as an ⟨operand⟩,
⟨prefix operator⟨, ⟩postfix operator⟩, or ⟩infix operator⟨.

(a)

(b)

Figure 4. Screenshots of tylr showing a program’s (a) term
and (b) tile structure.

(a)

(b)

Figure 5. The grouter in action, invoked (in magenta) by
tylr after every user modification (in orange). We show
the underlying tile structure rather than the default term
structure for expositional clarity.

Via operator-precedence parsing, a sequence of tiles re-
assembles into a valid term if and only if the tiles fit together
into a convex hexagon; that is:

(1) consecutive tiles fit together, i.e. one tile’s convex tip
meets the concave tip of the other; and

(2) tiles at the ends have convex outer tips.

In order to maintain these conditions of fit and ensure proper
term reassembly, tylr is equipped with a subsystem we dub
the grouter. Invoked immediately after each user modifica-
tion, the grouter inspects the modification site and inserts
or removes system-privileged structures, collectively called
grout, that act as connecting glue between otherwise ill-
fitting tiles.

tylr: A Tiny Tile-Based Structure Editor TyDe ’22, September 11, 2022, Ljubljana, Slovenia

(a) If the backpack is balanced, i.e. carries only complete tiles,
then the user may move freely.

(b) If the backpack is imbalanced, i.e. carries unmatched shards,
then the user may only traverse past balanced ranges.

Figure 6. The backpack in action, guiding user movement based on its contents.

For example, consider the sequence of edit states shown
in Figure 5a, where the user modifies the program in Fig-
ure 4 by multiplying the function application f[2, 3] by 4.
Upon the user inserting the operator *, the grouter inspects
the affected tile sequence; identifies that the last tile has a
concave right tip, which violates condition (2); and repairs
the edit state by inserting grout to its right. Subsequently,
when the user inserts 4, the grouter identifies that the af-
fected sequence once more satisfies the conditions of fit, and
removes the now excess grout.

Grout elements come in two varieties: convex and concave.
Convex grout, such as that inserted and removed in Figure
5a, succeed the familiar concept of holes [18] in term-based
structure editors. Meanwhile, concave grout model infix op-
erator placeholders between yet-to-be-adopted operands. For
example, consider the edit state sequence shown in Figure
5b, where the user press Backspace to the multiplication
operator * inserted in Figure 5a. Upon deletion, the grouter
identifies a violation of condition (1) and repairs the edit state
by inserting concave grout between the orphaned operands.
As discussed in Section 2, if we were to perform the same
edit in a term-based editor with only the usual notion of
holes, the editor would need to choose one of the orphaned
children, f[2, 3] or 4, to remove along with the parent;
with concave grout, tylr can save both.

3.2 Tiles⇌ Shards: The Backpack
tylr features a second subsystem, called the backpack, that
operates independently from the grouter. Upon making a
selection, the user may pick it up into the backpack and
put it down elsewhere, much like a text editor user uses the
clipboard to cut and paste. Unlike the clipboard, the backpack
is a visible component attached to the cursor. Moreover, it
is structure-aware and guides user movement based on its
contents to ensure they are put down in reasonable positions.
Figure 6 shows how the backpack could be used to com-

plete one of the tasks we assigned our study participants.
4 out of 11 participants completed the task using an edit
sequence like the one shown in Figure 6a: upon selecting the
applied function arguments, they picked up the selection,

moved right twice, and put it down. While term-based struc-
ture editors often provide cut-and-paste affordances, such
a workflow would be impossible in that setting, since the
selected tiles do not alone form a complete term—indeed, we
observed participants particularly struggle to complete the
same task with a term-based editor because of this limitation
(Section 4.2).

Sometimes even more selection granularity may be de-
sirable. Consider an alternative approach to completing the
same task, shown in Figure 6b, taken by another 4 of our
study participants. They began this edit sequence by select-
ing the closing brackets, thereby disassembling the func-
tion application tiles into shards: the individual matching
tokens that comprise a tile. They then picked up this selec-
tion, moved left twice, and put it down. Whereas in Figure
6a the backpack’s contents were balanced i.e. had no un-
matched shards, in this case the backpack’s contents were
imbalanced.

Text editing programmers may be familiar with a feeling
of tension that comes with manipulating such selections,
given the possibility of miscounting delimiters and putting
them somewhere that breaks the well-nested structure of
their program. In a tile-based setting, the backpack relieves
this burden by steering the user’s cursor movement such
that it can only move past balanced ranges if the backpack is
imbalanced, ensuring that the result of unloading backpack
can be reassembled into well-nested tiles. Moreover this may
lead to efficiency gains: while both edit sequences in Figure
6 take 4 user actions, (b) requires only 2 steps of movement
to make the initial selection, whereas (a) requires 16.

4 Evaluation
To investigate tylr’s usability, we ran a within-subjects
lab study in which participants completed a series of short
program editing tasks using VS Code, a text editor; a baseline
term-based editor we built with JetBrains MPS; and tylr.
We sought to answer the following questions:

• Does tylr help first-time users complete program edit-
ing tasks more quickly than with another keyboard-
driven but term-based structure editor? How does

TyDe ’22, September 11, 2022, Ljubljana, Slovenia David Moon, Andrew Blinn, and Cyrus Omar

expr e ::= n | x | (e)
| \ x { e } | e[e]
| let x = e in e
| e * e | e / e
| e + e | e - e
| e,e

num n ∈ {0 − 9}
var x ∈ {a − z}

(a) The binary operators are ar-
ranged into rows ordered by their
operator precedence.

(* A: bind to a variable and use *)

(* A-t *) \ x { let i = n * n - 8 in x/i }

(* A-m *) let f = \ x { let i = n * n - 8 in x/i } in f[n]

(* B: internalize bindings *)

(* B-t *) let f = \ x { 5/x } in let m = n + 1 in let y = (f[m]) in y/n

(* B-m *) let y = (let f = \ x { 5/x } in let m = n + 1 in f[m]) in y/n

(* C: extract a helper function *)

(* C-t *) (g[a] * h[b] + c * r[x * x], g[a] * h[b] + c * s[y * y])

(* C-m *) let f = \ n { g[a] * h[b] + c * n } in (f[r[x * x]], f[s[y * y]])

(* D: transfer arguments *)

(* D-t *) f[g[h[x * x][y * z - y][z * y - z]]]

(* D-m *) f[g[h[x * x]]][y * z - y][z * y - z]

(b) The eight tasks are grouped into four pairs labeled A, B, C, D. Each pair consists of a transcription
task (A-t, B-t, C-t, D-t) followed by a modification task (A-m, B-m, C-m, D-m).

Figure 7. The textual syntax of Lamb (a) and the editing tasks in Lamb we assigned our participants (b).

this performance compare to their text editor perfor-
mance?

• To what extent do users make use of tylr’s selection
expressivity?

4.1 Method
We recruited 11 participants (P1-P11, 5 female and 6 male,
µ = 22.2 years old, σ = 2.9 years) from students at the Uni-
versity of Michigan by posting in the university subreddit
(r/uofm) and in chat forums shared by computer science
graduate students, as well as by emailing students enrolled
in the undergraduate course on programming languages. Be-
cause our tasks involved editing programs in an expression-
oriented language (e.g. OCaml, Rust, Scala, etc), we selected
for those with some prior exposure. Most participants re-
ported less than a year of experience with such languages
but had otherwise substantial programming backgrounds
(µ = 6.8 years, σ = 3.3 years). Each participant was compen-
sated $30 dollars for a 75-minute session.
Each study session consisted of three components, one

for each editor. Each component consisted of a 10-minute
tutorial portion followed by a task portion, in which the
participant completed small editing tasks with the given
editor in an artificial expression-oriented language called
Lamb. We designed Lamb’s syntax, shown in Figure 7a, to
accord with tylr’s prototypal limitations.

Figure 7b shows the eight editing tasks participants com-
pleted in each editor component. The tasks were presented
in four pairs in a randomized order for each participant-
component. Each pair (e.g. A) consisted a transcription task
(e.g. A-t), where the participant transcribed a Lamb program

from scratch (after taking up to 30 seconds to read it); fol-
lowed by a modification task (e.g. A-m), where the partici-
pant modified their transcribed program (after taking up to
a minute to read the modified program). Within the limits of
Lamb and tylr, we designed our modification tasks to repre-
sent general code restructuring patterns one may encounter
in larger-scale settings. We intentionally chose non-minimal
starting programs so as to disincentivize wholesale deletion
and re-transcription in modification tasks.
Every participant started with the VS Code component.

We used its tutorial portion to introduce participants to Lamb
and to verify they understood its term structure before pro-
ceeding to the structure editing components. Specifically,
as we introduced Lamb’s syntax, we asked participants to
parenthesize all subterms in a few sample programs. We
configured VS Code to syntax-highlight Lamb expressions
[5] and color matching brackets [6].
Participants were randomly assigned to an order for the

subsequent MPS and tylr components. Both tutorials cov-
ered the basics of expression construction; automatic hole/-
grout insertion and removal; and selection and cut-and-paste
capabilities. The MPS tutorial additionally covered MPS’s
“SurroundWith” menu [16], a user-invoked dropdown menu
that provides options for wrapping the currently selected
program term in a new form. Using MPS’s grammar cells
system [23], we configured our MPS editor to support left-
to-right insertion of operator sequences, including wrapping
a term as the conclusion of a new let expression and as the
function of a new function application. In order to maintain
parity with tylr’s limitations, our MPS editor used single-
key inputs for constructing expression forms (e.g. = for a
let expression, \ for a lambda expression); variables were

tylr: A Tiny Tile-Based Structure Editor TyDe ’22, September 11, 2022, Ljubljana, Slovenia

Figure 8. Summary of the slowdowns participants experienced in each task when using a structure editor as opposed to
a text editor, where the slowdown is calculated as a participant’s structure editor completion time divided by their text
editor completion time. Each line segment corresponds to a participant; the left and right endpoints indicate the participant’s
MPS-vs-text slowdown and tylr-vs-text slowdown, respectively, on the x-axis-labeled task.

restricted to single characters; and the edit state was always
laid out in a single line.

We asked the participants to complete each task as quickly
and accurately as they comfortably could and recorded their
screen during the tasks. We did not impose any time limits;
no task took more than 5 minutes. A few participants did
not complete all tasks in their final component because we
ran out of time, and we discarded the data for the couple
occasions the participant accidentally refreshed the browser
in the middle of a task. To keep our data well-matched, for
any missing or discarded data for a task, we discarded the
corresponding data for the same task in all components.

4.2 Results
Our evaluation suggests that participants did indeed make
use tylr’s selection expressivity and that this helped them
complete some modification tasks more quickly than with
MPS. On other tasks, however, participants were slowed by
a few limitations in tylr’s current design.
Figure 8 summarizes the task completion times we mea-

sured across all three editor components. We treated the
participant’s VS Code completion time for each task as a
normalization factor and focused our analysis on the relative
slowdowns (or speedups) the participant experienced on the
same task when using one of the two structure editors, cal-
culated as the ratio of their structure editor completion time
to their text editor completion time. By and large, partici-
pants were slower with the structure editors than with text,
which we expected given that the participants had no prior
experience with the structure editors. We are encouraged,

however, to see that several were faster on some transcrip-
tion tasks, and a few were faster with tylr specifically on
some modification tasks, though some of this may be due to
learning effects from completing the VS Code component
first.

For each task, we used a paired t-test to check for signifi-
cant differences between the base-2 logarithms of the struc-
ture editor slowdowns. We observed no significant differ-
ences between slowdowns on the transcription tasks except
for C-t, where we found that participants experienced greater
slowdown using tylr than with MPS (t = 2.37,p < 0.05,
Cohen’s d = 0.79). We think this was largely due to an inci-
dental limitation: Task C-t involved moving past 6 closing
brackets; meanwhile tylr did not share with VS Code and
MPS the ability to move past a closing bracket by typing it,
forcing users instead to reach for the right arrow key instead,
frequently after a pause to stifle their usual habit or undo
their accidental insertion of a new pair of brackets.

In the modification tasks, we found that participants expe-
rienced dramatically less slowdown using tylr over MPS on
Tasks B-m (t = −2.51,p < 0.05, Cohen’s d = 0.83) and D-m
(t = −4.87,p < 0.001, Cohen’s d = 1.62). Notably these tasks
correspond to those in which participants made the most use
of tylr’s selection expressivity. Figure 9 summarizes counts
of selections users picked up into the backpack during the
modification tasks of the tylr component, broken down
by task and structure of the selected content. Overall, more
than half (36) of all selections (67) picked up by participants
fell into the balanced and imbalanced categories, i.e. could
not be specified in MPS. The same is true specifically of the

TyDe ’22, September 11, 2022, Ljubljana, Slovenia David Moon, Andrew Blinn, and Cyrus Omar

selection structure

term balanced imbalanced total

task

A-m 10 0 5 15
B-m 5 1 8 14
C-m 16 5 5 26
D-m 0 4 8 12
total 31 10 26 67

Figure 9. Counts of selections participants picked up into
the backpack when using tylr to complete the modification
tasks, broken down by task and the following structural
categorization of the selected content: a term at selection
time (e.g. the selection in Figure 4a), balanced but not a term
at selection time (Figure 6a), and imbalanced (Figure 6b).

selections picked up in Tasks B-m (9 out of 14) and D-m (12
out of 12) respectively, which suggests that tylr’s selection
expressivity was important for completing those tasks more
quickly. After completing Task D-m using the edit sequence
in Figure 6a, P10 remarked: “That’s exactly what I wanted
to try to do in the last one and then it didn’t work. It’s nice
that we get both the structure but also like when you do
selections, like it works the way you expect it to, like it’s
actually taking the characters that you’re expecting... so this
is great.”

We observed no significant differences between the struc-
ture editor slowdowns on Tasks A-m and C-m; both columns
in Figure 8 show several participants experienced worse
slowdowns with tylr than with MPS. On these tasks, we
observed many participants get slowed by prototypal limita-
tions of tylr’s backpack system. A major limitation is that
the user cannot insert and remove forms as usual when they
have something in the backpack, as one can with the clip-
board in VS Code and MPS. Several participants forgot about
this limitation when completing Task A-m with tylr: they
started by picking up the starting program and attempted
to construct a let expression, only to be reminded by tylr’s
interface that this is not possible.

Another, more subtle breakdown was caused by the back-
pack’smovement behavior changing dramatically given small
changes in the picked-up selection. For example, consider
the two edit sequences shown in Figure 10. In the first se-
quence, the picked-up selection is balanced, so subsequently
the user may move freely, in particular into the let definition
where they intend to put down the selection. Now suppose
the user accidentally overselects the opening parentheses
as well, as at the start of the second edit sequence. In this
case, because the backpack contents are imbalanced, the user
finds they cannot enter the let tile as intended. We observed a
few participants get confused after making the same mistake
when completing Task C-m with tylr.

(a)

(b)

Figure 10. Two similar edit sequences showing the error-
proneness of strictly backpack-guided movement. Intending
to perform the first edit sequence in 10a, where the picked-up
selection is balanced, the user may accidentally overselect
and pick up an imbalanced selection, which dramatically
changes the user’s subsequent allowed movement.

4.3 Limitations
Our study had several limitations. Our task design was con-
strained by tylr’s prototypal nature; the editing tasks were
small, synthetic, and given on single lines in an artificial lan-
guage with unfamiliar syntax. The measured times record
participants’ first-time use of both structure editors and do
not reflect optimal performance.
It is possible to engineer more ergonomic structure edi-

tors with MPS than the one we built and evaluated in this
study. Part of the limitations of our editor were to maintain
parity with tylr’s limitations, as described in Section 4.1.
In general, it is possible to adjust the language grammar to
improve an MPS editor’s selection expressivity. Our editor
directly implemented the expression structure of Lamb, as
given in Figure 7a, which for example makes it impossible
to select a let binding independent of its conclusion (e.g. let
x = 1 in in let x = 1 in x); this would be possible if
instead we introduced a distinct expression block sort con-
sisting of a sequence of let bindings and expression lines,
each individually selectable in this form. We view such gram-
matical adjustments as ad hoc approximations of the generic
disassembly of terms into tiles in the tile-based setting, and
sought to focus our comparison on pure term- and tile-based
editing.

tylr: A Tiny Tile-Based Structure Editor TyDe ’22, September 11, 2022, Ljubljana, Slovenia

5 Future Work
Efficient and easy-to-use structure editing has been tanta-
lizingly out of reach for many decades. This paper high-
lights and targets the central tension between consistently
available hierarchical structure and flexible editing of its
linearized representation. Our proposed solution, tile-based
editing, navigates this tension by operating on a broader
class of structures than traditional term-based editing, allow-
ing disassembly of hierarchical structures while ensuring
proper reassembly. Our user study of tylr, a tiny tile-based
editor, showed that users made frequent use of this struc-
tural flexibility, and that this flexibility helped them complete
some code restructuring tasks significantly more quickly
than with a traditional term-based structure editor. We are
encouraged by these results, although our study was limited
due to tylr’s prototypal nature. In future work, we plan to
scale up tile-based editing so that we may use and evaluate
it in more realistic settings.
This involves two sets of challenges. The first centers

around scaling up basic editing affordances, such as multi-
key input, multi-character tokens, multi-line layout, as well
as lifting the restrictions imposed by tylr’s current back-
pack system. The second centers around scaling up to more
realistic languages featuring multiple sorts as well as tokens
shared across different syntactic forms. We are currently
exploring a new tile-based system aid that is capable of
"remolding" tiles, as well as a sort system that allows for
sort inconsistencies much like Hazelnut [18] allows for type
inconsistencies. In addition, we hope to generalize our ap-
proach by investigating which grammar classes are suitable
for tile-based editing, leading ultimately to a tile-based editor
generator. If these challenges can be overcome, we hope to
achieve a generic approach to structure editing that compro-
mises virtually none of the fluidity and familiarity of text
editing.

References
[1] R. Bahlke and G. Snelting. 1992. Design and structure of a semantics-

based programming environment. International Journal of Man-
Machine Studies 37, 4 (1992), 467–479. https://doi.org/10.1016/0020-
7373(92)90005-6 Structure-based editors and environments.

[2] David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn
Turbak. 2017. Learnable Programming: Blocks and Beyond. Commun.
ACM 60, 6 (May 2017), 72–80. https://doi.org/10.1145/3015455

[3] Thorsten Berger, Markus Völter, Hans Peter Jensen, Taweesap Dang-
prasert, and Janet Siegmund. 2016. Efficiency of Projectional Editing:
A Controlled Experiment. In Proceedings of the 2016 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering
(Seattle, WA, USA) (FSE 2016). ACM, New York, NY, USA, 763–774.
https://doi.org/10.1145/2950290.2950315

[4] Neil C. C. Brown, Michael Kolling, and Amjad Altadmri. 2015. Position
paper: Lack of keyboard support cripples block-based programming.
In 2015 IEEE Blocks and Beyond Workshop (Blocks and Beyond). 59–61.
https://doi.org/10.1109/BLOCKS.2015.7369003

[5] VS Code. 2022. Syntax Highlight Guide. https://code.visualstudio.com/
api/language-extensions/syntax-highlight-guide. Accessed: 2022-05-
30.

[6] Henning Dieterichs. 2021. Bracket pair colorization 10,000x
faster. https://code.visualstudio.com/blogs/2021/09/29/bracket-pair-
colorization. Accessed: 2022-05-30.

[7] Dennis R. Goldenson and Marjorie B. Lewis. 1988. Fine Tuning Selec-
tion Semantics in a Structure Editor Based Programming Environment:
Some Experimental Results. SIGCHI Bull. 20, 2 (Oct. 1988), 38–43.
https://doi.org/10.1145/54386.54400

[8] T.R.G. Green and M. Petre. 1996. Usability Analysis of Visual Pro-
gramming Environments: A ‘Cognitive Dimensions’ Framework. Jour-
nal of Visual Languages and Computing 7, 2 (1996), 131–174. https:
//doi.org/10.1006/jvlc.1996.0009

[9] Robert Holwerda and Felienne Hermans. 2018. A Usability Analysis
of Blocks-based Programming Editors using Cognitive Dimensions. In
2018 IEEE Symposium on Visual Languages and Human-Centric Comput-
ing (VL/HCC). 217–225. https://doi.org/10.1109/VLHCC.2018.8506483

[10] Michael Kölling. 2010. The Greenfoot Programming Environment.
ACM Trans. Comput. Educ. 10, 4, Article 14 (Nov. 2010), 21 pages.
https://doi.org/10.1145/1868358.1868361

[11] Bernard Lang. 1986. On the Usefulness of Syntax Directed Editors. In
Proceedings of an International Workshop on Advanced Programming
Environments. Springer-Verlag, Berlin, Heidelberg, 47–51.

[12] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and
Evelyn Eastmond. 2010. The Scratch Programming Language and
Environment. ACM Trans. Comput. Educ. 10, 4, Article 16 (Nov. 2010),
15 pages. https://doi.org/10.1145/1868358.1868363

[13] Philip Miller, John Pane, Glenn Meter, and Scott A. Vorthmann. 1994.
Evolution of Novice Programming Environments: The Structure Edi-
tors of Carnegie Mellon University. Interact. Learn. Environ. 4, 2 (1994),
140–158. https://doi.org/10.1080/1049482940040202

[14] Sten Minör. 1992. Interacting with Structure-Oriented Editors. Int. J.
Man Mach. Stud. 37, 4 (1992), 399–418. https://doi.org/10.1016/0020-
7373(92)90002-3

[15] Jens Monig, Yoshiki Ohshima, and John Maloney. 2015. Blocks at
Your Fingertips: Blurring the Line Between Blocks and Text in GP.
In Proceedings of the 2015 IEEE Blocks and Beyond Workshop (Blocks
and Beyond) (BLOCKS AND BEYOND ’15). IEEE Computer Society,
Washington, DC, USA, 51–53. https://doi.org/10.1109/BLOCKS.2015.
7369001

[16] JetBrains MPS. 2021. MPS Intentions. https://www.jetbrains.com/help/
mps/mps-intentions.html. Accessed: 2022-05-30.

[17] Lisa Rubin Neal. 1986. Cognition-Sensitive Design and User Modeling
for Syntax-Directed Editors. SIGCHI Bull. 18, 4 (May 1986), 99–102.
https://doi.org/10.1145/1165387.30866

[18] Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and
Matthew A. Hammer. 2017. Hazelnut: a bidirectionally typed structure
editor calculus. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris, France, January
18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM,
86–99. https://doi.org/10.1145/3009837

[19] Tim Teitelbaum and Thomas Reps. 1981. The Cornell Program Synthe-
sizer: A Syntax-directed Programming Environment. Commun. ACM
24, 9 (Sept. 1981), 563–573. https://doi.org/10.1145/358746.358755

[20] Michael L. Van De Vanter. 1995. Practical language-based editing for
software engineers. In Software Engineering and Human-Computer
Interaction, Richard N. Taylor and Joëlle Coutaz (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 251–267.

[21] Markus Voelter and Vaclav Pech. 2012. Language modularity with
the MPS language workbench. In 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland,
Martin Glinz, Gail C. Murphy, and Mauro Pezzè (Eds.). IEEE Computer
Society, 1449–1450. https://doi.org/10.1109/ICSE.2012.6227070

https://doi.org/10.1016/0020-7373(92)90005-6
https://doi.org/10.1016/0020-7373(92)90005-6
https://doi.org/10.1145/3015455
https://doi.org/10.1145/2950290.2950315
https://doi.org/10.1109/BLOCKS.2015.7369003
https://code.visualstudio.com/api/language-extensions/syntax-highlight-guide
https://code.visualstudio.com/api/language-extensions/syntax-highlight-guide
https://code.visualstudio.com/blogs/2021/09/29/bracket-pair-colorization
https://code.visualstudio.com/blogs/2021/09/29/bracket-pair-colorization
https://doi.org/10.1145/54386.54400
https://doi.org/10.1006/jvlc.1996.0009
https://doi.org/10.1006/jvlc.1996.0009
https://doi.org/10.1109/VLHCC.2018.8506483
https://doi.org/10.1145/1868358.1868361
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1080/1049482940040202
https://doi.org/10.1016/0020-7373(92)90002-3
https://doi.org/10.1016/0020-7373(92)90002-3
https://doi.org/10.1109/BLOCKS.2015.7369001
https://doi.org/10.1109/BLOCKS.2015.7369001
https://www.jetbrains.com/help/mps/mps-intentions.html
https://www.jetbrains.com/help/mps/mps-intentions.html
https://doi.org/10.1145/1165387.30866
https://doi.org/10.1145/3009837
https://doi.org/10.1145/358746.358755
https://doi.org/10.1109/ICSE.2012.6227070

TyDe ’22, September 11, 2022, Ljubljana, Slovenia David Moon, Andrew Blinn, and Cyrus Omar

[22] Markus Voelter, Janet Siegmund, Thorsten Berger, and Bernd Kolb.
2014. Towards User-Friendly Projectional Editors. In Software Lan-
guage Engineering, Benoît Combemale, David J. Pearce, Olivier Barais,
and Jurgen J. Vinju (Eds.). Springer International Publishing, Cham,
41–61.

[23] Markus Voelter, Tamás Szabó, Sascha Lisson, Bernd Kolb, Sebastian
Erdweg, and Thorsten Berger. 2016. Efficient Development of Con-
sistent Projectional Editors Using Grammar Cells. In Proceedings of

the 2016 ACM SIGPLAN International Conference on Software Language
Engineering (Amsterdam, Netherlands) (SLE 2016). ACM, New York,
NY, USA, 28–40. https://doi.org/10.1145/2997364.2997365

[24] DavidWeintrop. 2019. Block-Based Programming in Computer Science
Education. Commun. ACM 62, 8 (July 2019), 22–25. https://doi.org/10.
1145/3341221

https://doi.org/10.1145/2997364.2997365
https://doi.org/10.1145/3341221
https://doi.org/10.1145/3341221

	Abstract
	1 Introduction
	2 Background & Motivation
	3 Design Overview
	3.1 Terms Tiles: The Grouter
	3.2 Tiles Shards: The Backpack

	4 Evaluation
	4.1 Method
	4.2 Results
	4.3 Limitations

	5 Future Work
	References

